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The stability of oscillatory channel flow to different classes of infinitesimal and finite- 
amplitude two- and three-dimensional disturbances has been investigated by direct 
numerical simulations of the NavierStokes equations using spectral techniques. All 
infinitesimal disturbances were found to decay monotonically to a periodic steady 
state, in agreement with earlier Floquet theory calculations. However, before 
reaching this periodic steady state an infinitesimal disturbance introduced in the 
boundary layer was seen to experience transient growth in accordance with the 
predictions of quasi-steady theories for the least stable eigenmodes of the 
Orr-Sommerfeld equation for instantaneous ' frozen ' profiles. The reason why this 
growth is not sustained in the periodic steady state is explained. Two-dimensional 
infinitesimal disturbances reaching finite amplitudes were found to  saturate in an 
ordered state of two-dimensional quasi-equilibrium waves that decayed on viscous 
timescales. No finite-amplitude equilibrium waves were found in our cursory study. 
The secondary instability of these two-dimensional finite-amplitude quasi-equi- 
librium states to  infinitesimal three-dimensional perturbations predicts transitional 
Reynolds numbers and turbulent flow structures in agreement with experiments. 

1. Introduction 
In  Part 1 (Akhavan et al. 1991) experimental results on the structure of turbulent 

oscillatory flows in pipes were presented. From this work and similar studies on 
purely oscillatory flows conducted by other investigators in a variety of other 
geometries (Sergeev 1966; Merkli & Thomann 1975; Hino, Sawamoto & Takasu 
1976; Ohmi et al. 1982; Hino et al. 1983), many features of the transition process in 
these flows have been identified. In particular, transition to turbulence has 
unanimously been observed at a Reynolds number based on Stokes boundary-layer 
thickness (Re') of about 500 to  550, independent of the particular flow geometry 
(pipe, channel, oscillating plate). The resulting turbulent flow is characterized by the 
sudden, explosive appearance of turbulence towards the end of the acceleration 
phase of the cycle. Turbulent flow is sustained throughout the deceleration phase, 
while during the early stages of the acceleration phase production of turbulence 
essentially stops and velocity profiles agree with laminar theory. Nevertheless, 
during this period the disturbances retain a small but finite energy level. 

These experimental observations are not in obvious accord with theory. It is 
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generally agreed that transition is due to the local instability of the Stokes boundary 
layers near the walls and, therefore, much of the existing theoretical work has 
addressed the stability of the basic Stokes layer. Theoretical work so far has been 
restricted to the study of infinitesimal disturbances, for which the equations of 
motion can be linearized; but even in this case the literature is not free of 
controversy. The difficulty lies with the time-dependent base velocity profile, which 
renders the time dependence of the disturbances inseparable and the method of 
normal modes formally inapplicable. One could, of course, neglect the time 
dependence of the base flow in the stability analysis and examine the stability of a 
succession of ‘frozen’ profiles (with a parametric dependence on time) by a normal 
mode approach. This would lead to a search for least-stable disturbances of the form 
~ ‘ ( x ,  t )  = ~ ’ ( z )  ei(az+PPaCt) + C.C. for the profile at a given phase during the cycle, where 
c is complex and the growth rates of the disturbances are given by Im(ac) .  This 
quasi-steady approach has been favoured by a number of investigators (Collins 1963 ; 
Obremski & Morkovin 1969; Monkewitz & Bunster 1987; Cowley 1987), and is 
justified if one assumes that the instability of the Stokes layer arises from inflexion 
points of instantaneous velocity profiles. Since inflexional instabilities grow (or 
decay) on convective timescales (t,,,, - 6/U,,), while in a Stokes layer the time 
variation of the base flow is by definition viscous (T N 1/sZ = P / v ) ,  one would then 
be justified in neglecting the time variation of the base flow in the stability analysis. 
Obviously, since a variety of velocity profiles exist throughout a cycle, such a quasi- 
steady stability analysis would find the flow during certain portions of the cycle to 
be less stable than during others. For an oscillatory Stokes flow, such a quasi-steady 
stability analysis predicts the most dangerous profiles to occur near the start of the 
acceleration phase of the cycle with a critical Re’ - 86 (see for example, von Kerczek 
& Davis 1974). The least stable eigenmodes predicted by such a quasi-steady analysis 
have their peak energies around the inflexion points or the critical layers of the 
boundary layers near the walls. These predictions do not agree with experimental 
observations, which show that the flow becomes explosively unstable a t  the start of 
the deceleration phase of the cycle for Reb N 500. 

The second class of linear stability calculations proposed in the literature (von 
Kerczek & Davis 1974; Hall 1978) take advantage of the time-periodic nature of the 
base flow and extend the results of Floquet theory to obtain a description of the 
behaviour of the disturbances in the periodic steady state. A search is made for 
unstable disturbances of the form v‘(x, 7) = ii’(z, 7 )  e i ( a z + ~ ~ ) + A T  + c.c., where V ( z ,  7) is a 
periodic function of time with the same periodicity as the base flow and A is complex. 
The principal Floquet exponent, Re ( A ) ,  is a measure of the growth or decay of the 
disturbance from one cycle to the next. In all previous studies (von Kerczek & Davis 
1974; Hall 1978) A has been found to be real and negative, indicating that in the 
periodic steady state the oscillatory Stokes layer is absolutely stable to all 
infinitesimal disturbances. In addition, no evidence has been found of the growth of 
a disturbance within a cycle such that an infinitesimal disturbance could grow to 
finite amplitudes. Unlike quasi-steady theories, the least stable eigenmodes found by 
Floquet-theory calculations have their peak energies away from the walls. How these 
results relate to quasi-steady calculations has so far not been explained. 

In the present work we would like to bridge some of the gap between theory and 
experiment by trying to identify a possible set of disturbances that could result in 
transitional Reynolds numbers, timescales of instability and turbulent flow 
structures similar to what has been observed in experiments. Our studies are based 
on direct numerical simulations of the NavierStokes equations using spectral 
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techniques, in which the evolution of the flow in the presence of a prescribed set of 
infinitesimal or finite-amplitude initial disturbances is followed. 

2. Problem formulation and numerical methods 
The flow geometry chosen for the numerical simulations is a two-dimensional 

channel, confined between rigid walls at z* = &h and infinite in extent in the 
streamwise, z*, and spanwise, y*, directions. For all the simulations, the Stokes 
parameter representing the ratio of channel half-width to Stokes-layer thickness was 
taken to be 10 ( A  = h/S = h(Q/2v)i  = 10). The flow rate per unit width into this 
channel was prescribed as Q* = - Qo sin Qt. The choice of a channel geometry for the 
numerical simulations as opposed to a pipe geometry for our experiments in Part 1 
was mainly a matter of convenience, and was based on the close similarity between 
experimental results for different flow geometries. 

The numerical schemes used in this study are similar to those used by Orszag & 
Kells (1980) and Orszag & Patera (1983) in earlier studies of transition to turbulence 
in steady wall-bounded shear flows. In this approach the stability of the flow is 
studied by solving numerically an initial-value problem that generally consists of the 
base flow plus a prescribed set of initial disturbances. Various details of the numerical 
schemes can be found in the literature (Orszag & Kells 1980; Orszag & Patera 1983). 
Here we summarize the basic discretization and time-stepping procedures. 

The Navier-Stokes equations are solved in rotational form, 

- = u* x w*-v -+#u*12 +VV2U*+f*Z, 
au* 
at C )  

where a* = V x u* is the vorticity, ( p * / p +  Iu*lz/2) is the pressure head and 2 denotes 
the unit vector in the x*-direction. The mean pressure gradient is not included in p* 
but is represented by the external forcing f *. Here, * denotes dimensional quantities. 

Introducing the non-dimensional quantities 

r = Q t ,  u = -  U* 
UO ’ 

where U --, Qo 
- 2h 

x = X* - where S = (gr, 17 = ($+ilu*l2)/U;, f = f */(?), U2 

6 ’  

the non-dimensional form of the NavierStokes equations is obtained as 

a0 

a7 - = &Res( u x o) - :(ReS) Vl7+ iV2v + +(Re6) f2. 

This equation is solved together with the continuity equation 

w . u  = 0 (3) 

subject to no-slip boundary conditions at z = * A ,  and periodic boundary conditions 
in the streamwise and spanwise directions, 

1 ( a  P 
2nn 2nm 

V Z+-,y+-,Z,T = U(Z,y,Z,T), 

where a and P are specified streamwise and spanwise wavenumbers. 
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Re' 
a 

Re (ac) 
Im (ac) 
Resolution 2h' x (P + 1 ) 
Courant no. 
Final time 
Predicted amp. change 

Computed amp. change 
Predicted phase change 

Computed phase change 

P 

e(Rc12) Im (uc) t 

e-1(Rc/2) Re (uc) t 

Frozen profile at at = 0 

2D disturbance 3D disturbance 

loo0 100042 
0.5 0 .5 /42  
- 0.5/1/2 

- 0.068 583 57 - 0.048 495 91 
0.020 15786 0.01425378 

8x65  8 x 65 
0.1 0.1 

23.722 23.722 
R / l o  x /  10 

23.406 23.446 
10.773' 10.773' 

10.772' 10.772' 

Frozen profile at at = lr/2 
~ 

2D disturbance 

1000 
0.5 

0.54467293 
0.001 753 19 

8 x 65 
0.1 

1.309 
x/2+x/10 

1.346 
- 85.557" 

- 85.8 13" 

3D disturbance 

100042 
0.5/1/2 
0 .5 /42  

0.385 141 92 
0.001 21291 

8 x 65 
0.1 

1.309 
x/2 +x/10 

1.341 
- 85.557" 

-85.813" 

TABLE 1 .  Comparison of the evolution of small-amplitude disturbances for frozen profiles to 
predictions from the Orr-Sommerfeld equation 

In  the spectral discretization the velocity is represented using Chebyshev 
polynomials in z and Fourier series in x and y, 

P -  N M 

p-0  n=-N m=-M 
u = x x C unmp(7)eianx e iPmyT p ( 4 .  

The time-stepping scheme used in the solution of (2) is a fractional-step (splitting) 
method (Orszag & Patera 1983) consisting of an explicit (second-order Adams- 
Bashforth) convective step, a pressure step where incompressibility is imposed, and 
an implicit (Euler-backward) step to incorporate viscous effects and impose viscous 
boundary conditions. Implementation of the imposed flow rate, Q = -sin!& is 
achieved by a Green's function method as described in Akhavan (1987). 

Initial conditions for the runs reported in this study generally consisted of the base 
laminar flow on which various combinations of infinitesimal or finite-amplitude two- 
or three-dimensional perturbations (corresponding to the least stable eigenmodes of 
the Orr-Sommerfeld equation for the ' frozen ' initial profile) were superimposed. The 
evolution of the disturbances were tracked by following the energies of the two- and 
three-dimensional perturbations, 

A number of tests were performed to verify the accuracy of our numerical schemes. 
An example of these tests is shown in table 1, where the computed growth rates from 
direct simulations for the least-stable eigenmodes of two different ' frozen ' profiles 
are compared to values predicted by an eigenvalue solution of the Orr-Sommerfeld 
equation for the same 'frozen ' profiles. 

Typical parameter values for direct simulations were P = 64 (or 128), 2N = 32, 
2M = 2, Courant number = 0.1. Convergence in all these parameters has been 
verified by either halving or doubling the resolution. 
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FIGURE 1. Iso-growth curves for the ‘frozen’ profiles at (a) Qt = 0 and ( b )  Qt = in. 

3. Infinitesimal disturbances 
In  this section we present results obtained for the evolution of small-amplitude 

(infinitesimal) disturbances. To save on computational time, the evolution of 
infinitesimal disturbances was tracked by solving the linearized Navier-Stokes 
equations instead of the full nonlinear problem. The linearized equations were 
obtained by assuming a velocity field of the form 

U ( X , 7 )  = 0 ( 2 , 7 ) 2 + € U ’ ( X , 7 )  (€ < 1)  (6) 

and retaining only terms of order E in the Navier-Stokes equations (2). The resulting 
linearized equations are 

a 
a7 - (u’, v’, w’) = - w e 8 (  0uL + w’Uz, Uvk, Ow;) - @e8(mz, mu, mz) + $V2(u’, v’, w’), (7) 

where u‘ is the disturbance velocity and ~ ( z , T )  is the laminar base velocity. In  the 
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a1 

FIGURE 2. Evolution of the energy of a two-dimensional disturbance at Re' = 1000, a = 0.5. The 
simulation was started at at = 0 and the initial disturbance is the least-stable eigenmode for the 
profile at this instant. 

formulation of v' only one Fourier mode is kept in the streamwise (and spanwise, in 
the case of three-dimensional disturbances) direction owing to linearity and 
separability. Except for the implementation of the nonlinear terms, the method of 
solution is identical to that described in 52. The accuracy of the solution has been 
verified by comparing the results of the linearized problem to that of the full 
simulation for a test case (Re8 = 1000, a = 0.5, two-dimensional disturbance). 

For planar geometries it can be shown (von Kerczek & Davis 1974) that  Squires 
theorem holds in the usual manner, relating the evolution of any three-dimensional 
infinitesimal disturbance to  a two-dimensional disturbance a t  a lower Reynolds 
number. The first instability is, therefore, expected to be two-dimensional. 
Consequently only two-dimensional disturbances will be considered. 

Before discussing the results of time-dependent simulations for the evolution of 
infinitesimal disturbances, we will briefly consider the predictions of a quasi-steady 
calculation for the same problem. These results were obtained by a spectral solution 
of the Orr-Sommerfeld equation (Orszag 1971), and are shown in figure 1 for the 
profiles at two phases during the cycle ; one the profile a t  the start of the acceleration 
phase (Qt = 0) and the other, the profile a t  start of the deceleration phase (Qt = in). 
As seen in figure 1,  a stability analysis of this kind predicts the profiles near the start 
of the acceleration phase to  be more dangerous than those near the start of the 
deceleration phase, and estimates the critical Reynolds number (Re8) to be -85. 
Both these features are in conflict with experimental observations which show that 
the flow becomes turbulent a t  the start of the deceleration phase with Re:,, - 500. 
For both phases Qt = 0 and in, however, the stability maps of figure 1 show the most 
unstable streamwise wavenumbers to be located near a - 0.5. If the quasi-steady 
problem is at all relevant to  the problem of stability of oscillatory Stokes layers, the 
stability maps of figure 1 suggest a search for unstable modes in the range of 
wavenumbers a - 0 . 2 4 . 7 .  
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FIGURE 4. Comparison of the growth rates from the direct simulation (solid line) to the growth rates 
of the least-stable eigenmodes of the Orr-Sommerfeld equation for the ‘frozen ’ profiles at each 
instant (symbols). (Two-dimensional disturbance, ReR = 1000, a = 0.5.) 

Next we will consider the results of direct simulations for the evolution of 
infinitesimal disturbances. The initial disturbance for these simulations is specified as 
the least-stable eigenmode of the initial ‘frozen’ profile. The evolution of this 
disturbance, however, is tracked by the time-dependent Navier-Stokes equations. In 
the periodic steady state, therefore, our results should agree with the results obtained 
by Floquet theory. 

The results of such a simulation for a channel flow a t  Res = 1000 subjected to a 
two-dimensional initial disturbance with 01 = 0.5 are shown in figures 2 and 3. The 
flow is started at  a time of Qt = 0 corresponding to zero flow rate. The initial 
disturbance is prescribed as the least-stable eigenmode of the Orr-Sommerfeld 
equation for the initial profile, and is normalized to have an energy, E,,  of 
relative to that of the mean flow. In  figure 2, the evolution of the overall energy of 
the disturbance is tracked as a function of time. It can be seen that the disturbance 
experiences an initial period of transient growth which is followed by a state of 
monotonic decay in the periodic steady state. The reason why the initial transient 
growth is not sustained in the periodic steady state can be seen in figure 3, where the 
distributions of the energy of the disturbances across the channel width are plotted 
for selected times during the simulation. The initial disturbance is seen to have 
its peak energy around the critical layers near the walls, with two less prominent 
peaks a t  successive inflexions points further away. For the first half-period or 
so (0 < Ot < 8x/10), the disturbances evolve in ways not too different from what 
would be predicted by quasi-steady theories; a t  each instant in time the distur- 
bance simply locks on to the least-stable eigenmode of the Orr-Sommerfeld equation 
for the profile at that instant. During this period, both the growth rates and the 
distributions of the energy of the disturbances across the channel width are identical 
to what would be predicted by quasi-steady theories. In figure 4, the growth 
rates observed in the direct simulation are compared to the growth rates of the least- 
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FIGURE 5. The disturbance field in the periodic steady state as seen in a frame of reference moving 
with the centreline velocity. (Rea = 1O00, a = 0.5.) (a) Ot = in, (b)  Ot = 411. 

stable eigenmodes for 'frozen ' profiles at each phase during the first half-cycle. The 
two growth rates are seen to be in agreement for 0 < Qt < 8x/10, but to diverge 
thereafter. The reason for this divergence can be understood from the plots of figure 
3, where it can be seen that in its evolution from Qt = 0 to $t and in the process of 
locking on to the least-stable eigenmodes a t  various phases, the disturbance has 
moved further away from the walls. Consequently, after the first half-cycle (say at 
a time of Qt = K), the disturbance is too far away from the walls to be able to excite 
the same modes that were excited half a period ago. Instead, it excites modes that 
are local to the disturbance (recall that the infinite Stokes layer has an infinite 
number of inflexion points, the strength of which drops off exponentially as a 
function of the distance from the walls). This 'mode-hopping ' continues until the 
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FIGURE 6. Evolution of the energy of a two-dimensional disturbance at Red = 1000, a = 0.5 for two 
distinct initial conditions. At large times the growth rates become independent of the initial 
conditions. 

disturbance has moved all the way to the centre of the channel, a t  which point it 
settles into a periodic steady state of monotonic decay. It is this steady-state 
behaviour that a Floquet analysis of the time-dependent OrrSommerfeld equation 
predicts. 

In the periodic steady state, the disturbances are synchronous with the base flow ; 
i.e. the disturbance a t  time Qt+2n differs from that at time Slt only by an 
exponential factor (with no phase change). This means that the Floquet exponents 
are real, in agreement with the results found by von Kerczek &'Davis (1974). This 
is to be expected since, as shown by von Kerczek & Davis (1974), if h is an eigenvalue 
so should be its complex conjugate, A*.  Thus the solution should either consist of 
pairs of simultaneous disturbance waves that propagate in opposite directions, or 
else it should be of the form of a standing wave 5'eiax+hT, where h is real. Furthermore, 
the results from the numerical simulations show that in the periodic steady state, the 
disturbance field is stationary in a frame of reference moving with the centreline 
velocity (figure 5). 

While the initial transient behaviour of the disturbances is dependent upon the 
specific form of the initial disturbance and the phase in the cycle a t  which the 
simulation is started, the behaviour in the periodic state is independent of these 
initial conditions. This can be seen in figures 6 and 7 which show the results for the 
same problem with the simulation started a t  Qt = -in and the flow subjected to an 
initial disturbance that is the least-stable eigenmode of the OrrSommerfeld 
equation for the profile at Qt = -in. As can be seen from a comparison of these 
figures and figures 2 and 3, for large times both the growth rates and the distributions 
of the energies of the disturbances across the channel width are identical for the two 
simulations. The initial transient behaviour of the disturbances shown in figure 7 is 
also of interest. I n  particular, note the competition between the two modes a t  Slt = 
0 in figure 7 .  Since the inflexion points near the walls are much stronger than the ones 
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FIGURE 8. Evolution of two-dimensional disturbances with streamwise wavenumbers 
a = 0.3, 0.5 and 0.7 at Re6 = 1000. 
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FIGURE 9. Evolution of two-dimensional disturbances with a = 0.5 at Red = 200, 500 and 1000. 

further away, whenever there is any residual disturbance in the near-wall region the 
near-wall modes are triggered. This is the case at  Qt = 0 but not the case at Ot = IT 
of figure 7. 

The results of the simulation for other values of Reb and streamwise wavenumber 
a are shown in figures 8 and 9. In each case the evolution of the disturbance is similar 
to the case discussed above; after an initial transient period of growth the 
disturbance migrates to the centre of the channel where it decays on viscous 
timescales. The resulting Floquet exponents are plotted in figure 10. The general 
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FIGURE 10. ?he variation of the principal Floquet exponent, A,  as a function of Rea and a. 

trends iri the behaviour of A as a function of Re8 and a are identical to those obtained 
by von Eekczek & Davis (1974, their figure 3) for a truncated flat Stokes layer, but 
the absolute magnitudes of A are smaller. 

For comparison to experimental measurements the transient behaviour of 
disturbances is more relevant than the Floquet-theory results, because in an 
experimental setting a certain level of noise is always present throughout the flow 
field. In this case, as we have seen, the disturbances can experience significant growth 
rates during the acceleration phase of the cycle. This may be the origin of the 
‘distorted laminar flows’ that have been reported by Hino et al. (1976), where small- 
amplitude disturbances were observed superimposed on the laminar profiles during 
the acceleration phase of the cycle. 

The transition pfocess at Re8 - 500, however, cannot be explained by infinitesimal 
disturbances. The transient growth of infinitesimal disturbances a t  the start of the 
acceleration phase of the cycle provides a means by which a disturbance can grow to 
finite amplitudes, after which nonlinear phenomena need to be considered. This will 
be considered in the next section. 

4. Finite-amplitude disturbances 
4.1. Two-dimensional primary instability 

We start with a consideration of two-dimensional disturbances of fhite amplitude. 
Even though a two-dimensional theory cannot explaih all the details of transition (in 
particular its three-dimensionality ), an understanding of the two-dimensional 
behaviour is important because transition to turbulence in many examples of 
‘ steady ’ wall-bounded and free-shear flows including free-shear layers (Pierre- 
humbert & Widnall 1982), plane Poiseulle flow (Herbert 1976, 1983; Orszag & 
Patera 1983), pipe and plane Couette flows (Orszag & Patera 1983) and boundary- 
layer flows (Herbert 1984) have been shown to be the result of secondary instability 
of two-dimensional finite-amplitude equilibrium (or quasi-equilibrium) waves to 
infinitesimal three-dimensional disturbances. 
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FIGURE 11 .  Evolution of the energy of a two-dimensional finite-amplitude disturbance at 
Re6 = 1000, a = 0.5. 

We will once again utilize direct numerical simulations of the Navier-Stokes 
equations to follow the evolution of the flow subjected to a finite-amplitude two- 
dimensional initial disturbance. Since the finite-amplitude disturbance is expected to 
arise from the nonlinear saturation of infinitesimal disturbances during their 
transient initial behaviour and since infinitesimal disturbances have their maximum 
transient growths around a wavenumber of a z 0.5 we will consider the finite- 
amplitude behaviour of a disturbance with a = 0.5 a t  a Reynolds number of 1000. 
The initial disturbance is specified to  be in the form of the least-stable eigenmode of 
the Orr-Sommerfeld equation and is normalized to have an energy, E,, of 0.04 
relative to that of the mean flow. The simulations were obtained with a resolution 
P = 128, 2N = 32. 

The results of the simulation for the case a = 0.5 are shown in figures 11-13. Of 
particular interest is whether the disturbances evolve to an equilibrium state, or 
decay, and in that case what the timescales of decay are. Figure 11 is a plot of the 
evolution of the energy of the disturbances as a function of time. After an initial 
transient period, the disturbances are seen to settle into a state of slow decay with 
viscous decay rates ( A  = -0.38 on viscous timescales). The development of the 
disturbances can be seen in more detail in figure 12, where the distribution of the 
energy of the disturbance across the channel width is shown for selected times during 
the simulation. The initial disturbance field is localized near the walls with a major 
energy peak near the (linear) critical layer and two less prominent peaks a t  
neighbouring inflexion points. Within a short time (on convective timescales) the 
disturbances migrate to the centre of the channel and settle into a quasi-equilibrium 
state where they are convected back and forth with the mean flow, maintaining their 
energy to  O(l/Re). Both the disturbance field and the attenuation rate, A,  are not too 
different from the Floquet-theory results of linear theory. Nonlinear effects tend to 
spread out the perturbation over a wider section of the cross-section and to  result in 
slightly larger values of A ( A  = -0.38 for finite-amplitude disturbances at  a = 0.5 as 
compared to A = -0.25 for the linear case). 

The distortion of the mean velocity profiles due to the presence of these 
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channel width for selected times during the simulation at Red = 1000, a = 0.5. 
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FIGURE 13. Ensemble-averaged velocity profiles in the presence of a two-dimensional finite- 
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disturbances is shown in figure 13. The largest effect occurs near the centre of the 
channel and away from the boundary layers, as this is where the disturbances are 
localized. 

Similar simulations were performed for wavenumbers a = 0.3 and 0.7,  both a t  
Re' = 1000. In both cases the decay of the two-dimensional finite-amplitude wave 
was faster than the case a = 0.5. Since the secondary instability mechanism 
described in the next section requires a two-dimensional finite-amplitude wave that 
retains its energy, the case a = 0.5 has been chosen for the remaining ca.lculations. 

4.2. Linear secondary instability 
When only two-dimensional disturbances are allowed the flow, as we have seen, 
evolves to a quasi-equilibrium state of travelling waves that decay over viscous 
timescales. If no further interactions with other disturbances take place, this flow 
remains well ordered at all times and shows no sign of the chaotic small-scale 
structure of real turbulent flows. However, in the presence of infinitesimal three- 
dimensional disturbances, the two-dimensional finite-amplitude flow is susceptible to 
an inviscid, large-growth-rate, broadband, spanwise excitation. This secondary 
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instability provides a plausible mechanism by which the abrupt nature of transition 
to turbulence in a wide variety of shear flows (including plane shear layers, plane 
Poiseulle flow, pipe and plane Couette flow and boundary-layer flow) can be 
explained. 

A general understanding of this secondary instability mechanism has recently 
been achieved by inviscid (Pierrehumbert 1986; Bayly 1986) as well as viscous 
(Landman & Saffman 1987) arguments. It has been shown that in all these shear 
flows, the existence of the two-dimensional finite-amplitude wave leads to vortical 
structures within the flow which (in approximate form) can locally be described by 
elliptical streamlines. These elliptical eddy flows are inviscidly unstable (Pierre- 
humbert 1986 ; Bayly 1986 ; Landman & Saffman 1987) to three-dimensional 
perturbations over a large range of spanwise wavenumbers (with a spanwise 
wavenumber cutoff only due to the action of viscosity). The broadband nature of this 
instability (large spanwise wavenumber viscous cutoff) is very significant in the 
problem of transition to turbulence in shear flows, as it provides a means by which 
arbitrarily small scales can abruptly be generated from a smooth basic state. 

The instability is dependent critically on the existence and persistence of the two- 
dimensional finite-amplitude wave at  transitional Reynolds numbers, and is 
otherwise independent of the details of the flow such as the shape of the velocity 
profiles or the amplitude of the two-dimensional finite-amplitude wave (as long as the 
amplitude is above some critical value, i.e. it is finite). The energetic role of the two- 
dimensional finite-amplitude wave in the secondary instability process has been 
investigated by Orszag & Patera (1983). It has been shown that the two-dimensional 
finite-amplitude wave does not directly supply energy to the three-dimensional 
component. It merely acts as a ‘catalyst ’, mediating the transfer of energy from the 
mean flow to the three-dimensional disturbance by continuously tilting the three- 
dimensional mean vorticity so that effective stretching can be achieved, leading to 
exponential growth of the three-dimensional disturbance. 

We will, therefore, investigate the secondary instability of the primary two- 
dimensional state described in the previous section to infinitesimal three-dimensional 
perturbations. Once again, we will employ direct numerical simulations of the full 
time-dependent NavierStokes equations for our investigation. In particular, we will 
study the time evolution of flows resulting from initial conditions 

u(x, t  = 0 )  = 172+u,,+su3,, 

where 0 is the basic laminar flow, uZD is the initial finite-amplitude two-dimensional 
disturbance with wave vector (a, 0) which is specified to be in the form of the least- 
stable eigenmode of the OrrSommerfeld equation for the initial profile and is 
normalized to have an energy, E,, of 0.04 relative to that of the mean flow, and uBD 
is the initial three-dimensional disturbance which has the form of a streamwise 
vortex with wave vector (0 ,p)  and has a total energy of lo-* relative to the mean 
flow. The calculations were performed with P = 128, 2N = 32, 2M = 2. Only one 
mode is kept in the spanwise direction owing to linearity and separability. The 
wavenumber of the two-dimensional finite-amplitude wave was chosen to be a = 0.5. 

The stability of this flow to disturbances with various spanwise wavenumbers /I at 
a Re8 of 1000 is shown in figure 14. To begin with, the simulations verify that there 
is indeed a strong three-dimensional instability. The three-dimensional disturbance 
grows in magnitude by a factor of 10 in the time it takes the fluid to travel 5 channel 
widths at  maximum bulk velocity. This corresponds to a convective growth rate and 
suggests that the instability mechanism is inviscid. 
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a = 0.5, p =  1.0. 

Secondly, the instability is effective for a large range of spanwise wavenumbers 
p - O ( l ) ,  emphasizing the broadband nature of the instability. There is a weak 
maximum in the magnitude of the growth rate a t  p x 1, but beyond that the 
preference in p is weak. 

Finally, we need to show that the instability described above cuts off at Res z 500, 
which is the experimentally observed value for the transition Reynolds number. This 
is demonstrated in figure 15, where the evolution of the two-dimensional quasi- 
equilibrium state in the presence of an infinitesimal three-dimensional perturbation 
is followed at Reynolds numbers of 200, 500 and 1000 for a = 0.5 and /3 = 1 .O. Note 
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that a Reynolds number on the order of 500 is singled out as the critical Reynolds 
number below which three-dimensional disturbances cannot grow to finite ampli- 
tudes. Since the rate of decay of the two-dimensional wave is roughly the same a t  
all three Reynolds numbers, we conclude that the cutoff is mainly due to viscous 
damping of the three-dimensional perturbation. 

5. Secondary instability and transition 
We would like to determine to what extent the secondary instability mechanism 

discussed in the previous section is relevant to the transition process observed 
experimentally. 

With respect to transition, the single most important parameter is the transitional 
Reynolds number. The critical Reynolds number predicted by secondary instability 
has already been shown to be in good agreement with the value of 500 that is 
observed in experiments. The next question is whether the secondary instability 
presented here saturates in an ordered state when it reaches finite amplitudes or 
whether it results in chaotic behaviour, and in general to what degree the resulting 
flow resembles turbulent flow structures that are observed in experiments. To answer 
these questions we have carried out a large numerical simulation at  a Re8 of 1000. The 
simulation was started from the results of the linear secondary instability calculations 
of the previous section at  a time of Qt = 4x/10, at which point the three-dimensional 
perturbation had reached an energy of 0.015. At this time the resolution in the 
spanwise direction was increased and the simulation was continued with P = 128, 
2N = 32, 2M = 16. 

The results of this simulation are shown in figures 16 and 17. In figure 16, the 
normalized energy of the disturbances (relative to that of the mean flow) obtained by 
direct simulations is plotted as a function of the phase in the cycle. For comparison, 
in the same figure the normalized energy of the disturbances from the experimental 
run for turbulent oscillatory flow in a pipe at  Re8 = 1080, A = 10.6 (from Akhavan 
et al. 1991) is also shown. It can be seen that there is excellent agreement between the 
simulations and experimental results for the second half-cycle during the simulation 
(x < Qt < 2x). In both cases the disturbances are seen to decay to small (but finite) 
levels of energy during the acceleration phase of the cycle, and to explosively grow 
prior to the start of the deceleration phase (Qt x 3x12). As can be seen in figure 16, 
the results of the simulation for 0 < Qt < x are not identical to those for x < Qt < 
2x. This is because the simulation was started from a low-resolution run at  Qt = 
4x/10. In particular the large peak in energy seen at Qt = x / 2  is expected to be an 
artifact due to the low resolution of the initial conditions. These effects are 
eliminated as time progresses within the simulation, and the results for x < Qt < 2x 
are expected to be representative of the behaviour of the flow in the periodic steady 
state. 

Ensemble-averaged velocity profiles obtained from the simulation are compared to 
experimental profiles in figure 17. There is excellent agreement in the general shapes 
of the two profiles both during the acceleration and during the deceleration phases 
of the cycle. As discussed in Part 1 (Akhavan et al. 1991), the profiles for the 
acceleration phases are well described by laminar theory, while those during the 
deceleration phase can be described by a three-layer description consisting of a 
viscous sublayer, a logarithmic layer (with von KBrmlin constant = 0.4), and an 
outer wake near the centre of the channel if velocities are normalized with wall- 
friction velocities. 
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6. Conclusions 
The results presented in this work suggest that transition to turbulence in 

oscillatory Stokes layers can be explained by a secondary instability mechanism of 
two-dimensional finite-amplitude waves to three-dimensional infinitesimal dis- 
turbances. The value of the transitional Reynolds number, as well as the statistics of 
the resulting turbulent flow are well predicted by such a secondary instability 
mechanism. 
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and for helpful discussions during the course of this work. This work was supported 
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